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Macroscopic surface tension in a lattice Bhatnagar-Gross-Krook model of two immiscible fluids

I. Halliday,1 S. P. Thompson,2 and C. M. Care2
1Division of Applied Physics, School of Science and Mathematics, Sheffield Hallam University, Pond Street,

Sheffield, S1 1WB, United Kingdom
2Materials Research Institute, Sheffield Hallam University, Pond Street, Sheffield, S1 1WB, United Kingdom
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We present a method by which an interface generating algorithm, similar to that of earlier lattice Boltzmann
models of immiscible fluids, may be extended to a two component, two-speed two-dimensional~D2!, nine-link
~Q9! lattice Bhatnagar-Gross-Krook fluid. For two-dimensional, microcurrent-free planar interfaces between
the two immiscible fluids we derive expressions for static interfacial tensions and interfacial distributions of the
two fluids. Extending our analysis to curved interfaces, we propose a scheme for incorporating the influence of
interfacial microcurrents that is based upon general symmetry arguments and is correct to second order in
lattice velocity. The analysis demonstrates that the interfacial microcurrents have only second-order influence
upon the macroscopic behavior of the model. We find good agreement between our calculations and simulation
results based on the microcurrent stream function and surface tension results from the pressure tensor or
Laplace law.@S1063-651X~98!03801-X#

PACS number~s!: 47.11.1j, 47.55.Dz, 47.55.Kf, 68.10.2m
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I. INTRODUCTION

Formation of emulsions from multicomponent immiscib
fluid mixtures is a complex problem of considerable tech
logical and theoretical importance. The utility of tradition
numerical methods is inhibited by advection of suspen
drops and marked departures in shape before burst. A
result, there is increasing interest in the study of rheolog
problems by lattice Boltzmann@1–5# and, most recently, dis
sipative particle dynamics technique@6#.

Of the one-componentlattice Boltzmann schemes avai
able, that which is algorithmically the simplest draws its
spiration from the work of Bhatnagar, Gross, and Krook
the Boltzmann equation of statistical physics. The epo
mous lattice Bhatnagar-Gross-Krook~BGK! scheme has
isotropy and Galilean invariance directly embedded into
technique that benefits from a simple collision step and
been shown to recover single-phase hydrodynamics@4,5#.
For these reasons we construct the two-component la
Boltzmann immiscible lattice-gas~LBILG ! model described
in Sec. II upon a particular variant of the BGK scheme a
not the linearized lattice Boltzmann algorithm of previo
work @7#. The variant used is two-dimensional with nine la
tice links and is thus designated D2Q9.@5#

Multicomponent immiscible lattice Boltzmann techniqu
allow one to calculate flows of viscous incompressible flu
mixtures by solving the dynamics of colliding and propag
ing particles on a regular lattice using a Boltzmann-ty
equation@1–3# subject to the additional influence of a colo
based segregation rule. Recently, the method has been
to simulate deformation and burst in droplets under shea
two dimensions@8,9# and sheared phase separation in th
dimensions@10#. The growing literature on the method ha
been reviewed by Rothmann and Zaleski@11#.

It has been argued that small-scale fluid velocity circu
tions, induced at an interface by the phase segregation r
are endemic in LBILG simulations@8#. The influence of such
microcurrents upon the macroscopic behaviour of LBIL
571063-651X/98/57~1!/514~10!/$15.00
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fluids is therefore of interest. In this paper an analysis sim
to that of Gunstensenet al. @7,8# is applied to calculate the
tension in the interface generated between two D2Q9 B
fluids.

The model is presented in Sec. II. In Sec. III we pres
the analysis of the static properties of two prototypic
LBILG BGK based interfaces. The results are used to pre
surface tension~a! in a plane interface from which symmetr
precludes any microcurrent~Sec. IV! and ~b! in interfaces
where these circulations are present~Sec. V!. For clarity, all
possible commonality with the work of Gunstensenet al. is
maintained. In Sec. VI we present details of simulations
our D2Q9 scheme, which are used to obtain mechanical
Laplace law surface tension measurements. The results
conclusions are presented in Sec. VII and VIII, respective

II. MODEL

Our model is a BGK scheme similar to that used in@7# but
based on a square lattice that supports link density prop
tion at two speeds and designated D2Q9. Figure 1 and T
I serve to define the nine D2Q9 lattice velocities~links! cj
and the associated indexing used in this work; we note
c9 is a rest direction. The densities that populate the lat
are designated red or blue,Ri(x,t) @Bi(x,t)# denoting the red
@blue# density at positionx, time t moving in directioni .
Multi-component fluid behavior arises when segregation
imposed upon such densities by a generalization of the B
collision to three steps.

First, the usual BGK collision step redistributes achr
matic density

Ni~x,t ![Ri~x,t !1Bi~x,t ! ~1!

to links using the scalar collision operatorv, which controls
fluid shear viscosity through@4,5#
514 © 1998 The American Physical Society
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57 515MACROSCOPIC SURFACE TENSION IN A LATTICE . . .
n5
1

6 F 2

v
21G . ~2!

In the second collision step the local lattice fluid press
tensorPab(x,t), approximated@1,7# by

Pab~x,t !5(
i

Ni~x,t !ciacib , ~3!

is rendered anisotropic at interfacial sites by accumula
~denuding! density on links perpendicular~parallel! to an
interface tangent.~The interfacial sites are those that inclu
nonzero densities of both colors.! The motivation for this
step is found by reference to the parent lattice-gas techniq
~see, e.g., the work of Rothmann and Keller@7#! and is a
process not without foundation in hydrodynamics@12#. To
achieve this redistribution we follow Gunstensenet al. and
adjust Ni(x,t) at mixed nodes by applying a density an
momentum conserving perturbation

DNi~x,t !5sC~x,t !cos$2@u f~x!2u i #%, ~4!

FIG. 1. Lattice link vectors~bold lines! used in the lattice BGK
model for the reported simulations. Links indexed by odd values
i subtend an angle of 45° to the horizontal. The angleb526.56°.
The angular intervals into which the color field direction must
resolved in order to produce an unambiguous prioritization of l
directions are each delimited by one solid and one dashed line

TABLE I. Angular orientations and components of the D2Q
lattice velocity vectors. NA denotes not applicable.

i c ix ciy ci
2 u i cos(2ui)

1 21 1 2 135 0
2 0 1 1 90 21
3 1 1 2 45 0
4 1 0 1 0 1
5 1 21 2 245 0
6 0 21 1 290 21
7 21 21 2 2135 0
8 21 0 1 180 1
9 ~rest! NA NA 0 NA NA
e

g

es

wheres is a surface tension parametercontrolling the am-
plitude of perturbations, angleu i is the angular orientation o
link i ~Fig. 1!, and u f(x,t) is the direction of acolor field
fI (x,t), defined by

fI ~x,t !5(
i , j

@Rj~x1ci ,t !2Bj~x1ci ,t !#ci , ~5!

where the underline denotes a vector quantity. We have
introduced into Eq.~4! a concentration factor C(x,t),

C~x,t !512UrR~x,t !2rB~x,t !

rR~x,t !1rB~x,t !U, ~6!

where rR(x,t) @rB(x,t)# denote the total of the red@blue#
densities at the node with positionx. The incorporation of
the concentration factor~6! into the perturbation makes evo
lution outside the interfacial region exactly the same as in
monophasic model and removes the possibility of surf
tension being activated byone-colordensity gradients, as is
the case in the ‘‘classical’’ immiscible lattice gas~ILG!,
where the presence of an interface induces changes that
be ‘‘felt,’’ in the case of interactions between droplets,
distances of several lattice units. Thus the range of inte
tions is likely to be reduced by the use of the rules encap
lated in Eqs.~4!–~6!, which may prove advantageous fo
certain applications.

In the third and final step, nodal colorrB(x,t), rR(x,t) is
allocated to link densities in that distribution which max
mizes the work done bycolor flux q(x,t)[( i@Ri(x,t)
2Bi(x,t)]ci against the direction offI (x,t) @7#. Clearly, to
achieve maximum segregation as much red~blue! as possible
should color the density on the linkcj of largest~smallest!
projection onto the direction offI (x,t). As the multi-speed
nature of our lattice affects any prioritization of links fo
color allocation, an unambiguous hierarchy for red popu
tion of links 1–9 requires thatfI (x,t) be resolved into the 16
angular intervals identified in Fig. 1. Then, for example, t
prioritization of links 1–9 that results whenfI (x,t) is found
to lie in angular intervalb is, in descending order,i
53,4,5,2,9,6,1,8,7. The need to resolvefI (x,t) into 16 inter-
vals emerges as one attempts to determine which of lini
52 or 5 isthird most favorable for red occupation, for suc
prioritization can be made only after determining the dire
tion onto which short link 2 and long link 5 have equ
projection. The latter is specified by the angleb526.56°.
Symmetry then requires that the positive quadrant is reso
into the four angular intervals shown~Fig. 1!. Note that link
i 59 ~rest! will always have priority 5. The propagate step
which all densities are translated by the appropriate velo
vector is carried out in the usual way on each red and b
density.

In an immiscible lattice-gas cellular automaton@7#, the
color field cannot influence the outcome ofmonochromatic
collisions. Thus sites of high average color purity are re
tively unaffected by the presence of a color field. It is th
fact and the need to promote a tractable model that motiv
our inclusion into the perturbation of the additional fact
C(x,t).

f

k
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516 57I. HALLIDAY, S. P. THOMPSON, AND C. M. CARE
III. ANALYSIS OF THE MODEL

Throughout we assume there to be sufficient local flatn
for the mechanical definition of surface tension@12#:

S5E
2`

`

@PN~w!2PT~w!#dw ~7!

to be applicable, wherew measures distance normal to th
plane of the interface~Fig. 2!, i.e., we assume tha
PN(w)→PT(w) quickly, asw increases. We postulate th
the principal modification necessary to account for interfac
curvature derives solely from the phenomenological inc
sion of the microcurrent. We consider the structure of
steady-stateinterface and therefore omit the timet from all
quantities throughout the following analysis.

Consider a stable planar interface, separated about a w
defined line, a situation, if that line is appropriately selec
~parallel with a lattice link directionci!, has sufficient tran-
sitional symmetry ~parallel to the interface! to preclude
variation between adjacent interfacial sites’ color gradi
fI (x,t). The latter@coinciding with the interfacial normal an
thereby the direction of the contour of integration in Eq.~7!#
may therefore be characterized by the constant angleū sub-
tended at the horizontaly axis ~Fig. 2!. These assumption
are justified by such a situation being readily realizable
appropriately initialized lattice Boltzmann~LB! simulations
@7#, but note that interfacialfluctuations~indigenous in any
class of direct simulation employing discrete particles! are
present in the parent ILG technique@13,14#. However, even
in the context of the ILG, a calculation, founded on assum
tions similar to ours and performed within the Boltzma
approximation@1#, may be employed to calculate surfa
tension from a prediction of the structure of the ensemb
average interface at steady state@14#. Adler, d’Humieres, and
Rothman also demonstrate@14# that ILG interface fluctua-
tions broadly obey classical statistics, but, importantly
the present work, similar fluctuations in the interfacial b
havior of lattice BGK~LBGK! interfaces are not observe
for the cases we consider here. We return to this point in S
IV. Although some similar effect might be inserted delibe
ately, the absence of such fluctuations from LBGK calcu
tions is what originally motivated the model@7#.

FIG. 2. Coordinate system used in the region of a planar in
face.
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Pressure tensor contractions, analogous to those in
~7!, are obtained using Eq.~3! as usual:

PN~x!5(
i

NiciN
2 , ~8!

PT~x!5(
i

NiciT
2 , ~9!

whereciT (ciN) denotes that component ofci tangential~nor-
mal! to the interface:

ciN~x!5uci ucos~u i2 ū !, ciT~x!5uci usin~u i2 ū !. ~10!

Following Ref.@7#, Eq. ~7! is considered as an average ov
M0 adjacent, long integration linesz5const and then cast a
a discrete summation over lattice nodes in thearea A so-
defined~Fig. 2!:

S5E
w52`

`

@PN~w!2PT~w!#dw

→
cos~ ū !

M0
(
xPA

(
i

Ni~x!Ui , ~11!

in which the summation onx is over allxPA and we have
introduced, following Eq.~10! and the notation of Ref.@7#,

Ui~x![~ciN
2 2ciT

2 !5ci
2cos@2~u i2 ū !#. ~12!

Note that while it is independent ofū ~Sec. V!, the factor
cos(ū)/M0 in Eq. ~11! is retained for the sake of compatibilit
with the work of Ref.@7#. Ni(x) devolves, for D2Q9, into
equilibrium andnonequilibriumparts@4,5#:

Ni
noneq~x![Ni~x!2Ni

eq~u!, ~13!

Ni
eq~u!5t i~113uacia2 3

2 uaua1 9
2 uaubciacib!, ~14!

t i5H 1
36r,
1
9 r,
4
9 r,

i 51,3,5,7
i 52,4,6,8
i 59.

~15!

We note that thex dependence ofNi
eq(u) arises only through

the x dependence of the velocity field; however,Ni
noneqwill

depend uponx through both the velocity and its gradient
Using Eqs.~12! and ~13!, Eq. ~11! may be rewritten as

S5
cos~ ū !

M0
(

x
(

i
Ni

eq~u!Ui~x!

1
cos~ ū !

M0
(

x
(

i
Ni

noneq~x!Ui~x!, ~16!

the two contributions to which we proceed to treat se
rately. Using Eqs.~14! and~15!, we find by evaluation with
a standard computer algebra package, and confirmed b
rect evaluation, that

r-



.

ly
ro
sta

e

la

i
-

-

ti

m
er

iv
g

ion.
lat-

nd

at
ee
ion
ea-
that
au-

er-
e a

re-

re-

is
s of

red
re-

0°.
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(
x

(
i

Ni
eq~u!Ui~x!5(

x
ru2cos$2@uu~x!2 ū #%, ~17!

where we have introduceduu(x) such that

ux5u cos@uu~x!#, uy5u sin@uu~x!#

and we have used the components ofci defined in Table I.
To deal with thesecondterm on the right-hand side of Eq
~16! we follow Gunstensenet al. and appeal to the lattice
Boltzmann equation for the BGK algorithm, appropriate
modified to account for the presence of interfacial ach
matic density perturbations and adapted to the steady
@7#:

Ni~x1ci !5Ni~x!2vNi
noneq~x!1DNi~x!. ~18!

Noting, for a closed lattice, that(xNi(x1ci)5(xNi(x) and
using Eq.~4!, one obtains after some algebra

(
x

(
i

Ni
noneq~x!Ui5

s

v (
x

C~x!(
i

cos@2~u i2 ū !#Ui

5
s

v
@622 cos~4ū !#(

x
C~x!, ~19!

which we note has the expected fourfold rotational symm
try. Incorporating Eqs.~17! and ~19! into Eq. ~16! yields an
expression for macroscopic surface tension:

S~s,v!5
cos~ ū !

M0
(

x
ru2cos$2@uu~x!2 ū #%

1
s cos~ ū !

M0v
@622 cos~4ū !#(

x
C~x!. ~20!

Reminding the reader that cos(ū)/M0 is independent ofū, we
remark that Eq.~20! for (~s,v! is correct to all orders of
fluid velocity. The second term on its right-hand side is re
tively straightforward to evaluate if we remember thatC(x)
vanishes at pure, noninterfacial sites. No simplification
evident in the first term of Eq.~20!, however, and the posi
tional summation must be evaluated over allxPA. Notwith-
standing, to leading order inu its contribution toS~s,v! at
practical values ofs ~see Sec. VII! is small. In this regime,
therefore,S(s,v);s/v, where we recall thatv determines
lattice fluid kinematic viscosity through Eq.~2!. To the same
order of approximation, Gunstensenet al. reported an analo
gous dependence of theirS upon their LBILG collision pa-
rameterl21, wherel is the eigenvalue of the LBILG colli-
sion matrix that determines the simulated fluid kinema
viscosity.

IV. SURFACE TENSION IN PLANE INTERFACES

A. Plane interface parallel to thez axis

Throughout this and subsequent sections we take a
crocurrent to be an interfacial effect resulting in a nonz
mass flux across a line parallel to a static interface and we
not consider further microcurrents defined in alternat
terms, which produce no mass flux on mesoscopic len
-
te

-

-

s

c

i-
o
do
e
th

scales and have no physical influence on surface tens
Consider a steady-state planar interface parallel to short
tice links along thez axis in which color is symmetrically
separated~Fig. 3!, so cos(ū)51. Translational symmetry
along thez axis implies an absence of any microcurrent a
a color gradientfÎ (x)5 f (y) ŷ. It is appropriately illustrative
of the notable stability of the LB techniques in general th
the direction of the color field in the final steady state is fr
of any fluctuations. For purposes of verification, the direct
of the color field measured from simulation showed no m
surable departure from this assumption. Note, however,
even for the plane geometries considered here, cellular
tomata based ILG simulations would containfluctuating in-
terfaces, even at ‘‘steady state.’’

For these initial lattices, we consider that the stable int
face cannot be centered on a single layer and will requir
minimum thickness of two layers, say,y5y0 andy011, and
a color distribution symmetrical under color reversal, cor
sponding to a concentration given by

C~x!5C„d~y2y0!1d~y2y021!…, ~21!

whereC is a constant. If there are no microcurrents,u50
everywhere and the expression for the surface tension
duces to

S~s,v!5
4sC

M0v (
z51,•••,M0 ;y

@d~y2y0!1d~y2y021!#

5
8sC

v
. ~22!

FIG. 3. Symmetry of populations in a vertical interface. Th
figure shows a lattice excerpt containing several mixed node
which two have been highlighted~open circles! in an interface cen-
tered on the dashed line. Nodes to the left are predominantly
(rR@rB) while, in the stable interface, those to the right are p
dominantly blue (rB@rR). Note that color populations in nodesA
andB are equivalent under color reversal and rotation through 18
The dotted line indicates the initial interface.
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At steady state, when the color content of each node mus
constant between successive steps, links connecting
mixed sites should contain, at each end, counter-propaga
equal densities of each color. If it is further assumed t
achromatic link densities depart only negligibly from the
restequilibrium valuest i , the value of the constantC in Eq.
~21! may be calculated.

Each interfacial site connects to three other mixed no
and three monochromatic sites in they direction and with
two equivalent sites in thez direction~Fig. 3!. We assume in
the following that the sites are pure red fory,y0 and pure
blue for y.y011. For diagonal, ‘‘speed 2,’’ linksi 53,5 in
y5y0 interacting with linksi 57,1 in y5y011:

R3~y0 ,z!5B3~y0 ,z!5R5~y0 ,z!5B5~y0 ,z!5 1
2 t15 1

72r0 ,

R1~y011,z!5B1~y011,z!5R7~y011,z!5B7~y011,z!

5 1
2 t15 1

72r0 ,

and similarly for the speed 1 linki 54 in y5y0 interacting
with link i 58 in y5y011:

R4~y0 ,z!5B4~y0 ,z!5 1
2 t25 1

18r0 ,

R8~y011,z!5B8~y011,z!5 1
18r0 ,

wherer0 is the achromatic density of the interfacial lattic
node and we have used identities~15!. With this information
the color density of the nodes iny5y0 may be calculated:

rB~y0 ,z!5B3~y0 ,z!1B4~y0 ,z!1B5~y0 ,z!

5~ 1
72 1 1

72 1 1
18 !r05 1

12r0 ,

rR~y0 ,z!5r02 1
12r05 11

12r0 ,

whence, from Eq.~6!, C5 1
6 . This value forC, on insertion

into Eq. ~22!, gives, for our model of a horizontal interfac
parallel to the short D2Q9 lattice links, a macroscopic s
face tension

S~s,v!5
4s

3v
. ~23!

B. Plane diagonal interface

For a steadydiagonal plane interface separated in a lin
parallel to the longer lattice links~Fig. 4! two different ~but
simply related! cross-interface density profiles occur. How
ever, the macroscopic surface tension can be calculated
a small modification. In the simplest case of an interfa
constituted by mixed sitesA,B in adjacent sectionsaa8,bb8
~Fig. 4! densities atA, $Ri(A),Bi(A)%, and those atB,
$Ri(B),Bi(B)%, are equivalent under combined color reve
sal and a two-fold rotation. If the achromatic densities
again assumed to depart negligibly from their rest equi
rium valuest i , the simplest distribution of color through th
diagonal interface may be deduced. For links in the o
~mainly red! mixed node in sectionaa8 ~Fig. 4!, connecting
to the mixed mainly blue node in twobb8 sections, postcol-
lision densities are
be
o

ng
t

s

-

ith
e

-
e
-

y

R4~A!5B4~A!5R6~A!5B6~A!5 1
2 t25 1

18r0 , ~24!

while for link 5 in sectionaa8 connecting to a pure blue
node

R5~A!50, B5~A!5t15 1
36r0 , ~25!

where we have again used identities~15!. Densities for the
mixed B node are easily obtained from the symmetry arg
ments already rehearsed. The color density of the mi
nodes in the diagonal interface is therefore

rB~A!5B5~A!1B4~A!1B6~A!5~ 1
36 1 1

18 1 1
18 !r05 5

36r0 ,
~26!

rR~A!5r02 5
36r05 31

36r0 , ~27!

whence, from Eq.~6!, C5 5
18 for both theA and B mixed

sites. Settingū545° and noting that there is anA anda B

FIG. 4. ~a! Populations in a diagonal interface. This figu
shows a lattice excerpt containing several mixed nodes of wh
three have been highlighted~open circles! in the interface centered
on the dashed line. Nodes above the dashed line are predomin
red (rR@rB), while, in the stable interface, those below are p
dominantly blue (rB@rR). Populations in nodesA andB are again
equivalent under color reversal and rotation through 180°.~b! Initial
distribution of color for the simulation of a diagonal interface on t
square D2Q9 lattice showing the periodic images of the red dia
nal layer in the box corners. Regions markedR (B) correspond to
red ~blue! mass. DistanceD527 lattice units.
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mixed site on any horizontal line crossing a diagonal int
face, it follows from Eq.~20! that the macroscopic surfac
tension is

S~s,v!5
40s

9&v
. ~28!

The preceding analysis of flat interfaces between static flu
neglects perturbation-induced departures from equilibri
rest density, the validity of which assumption increases w
decreasing perturbation amplitudes and is supported from
the results of Sec. V. It should be noted that this assump
implicitly restricts the principal analytical results of this se
tion @Eqs.~23! and ~28!# to apply when the induced macro
scopic surface tension is small. Note also that due to
absence of local curvature in the interface no density~pres-
sure! change between the bulk fluids separated by the in
face is to be expected. Moreover, the fact that, for the pre
model in the case of, e.g., the vertical interface along thz
direction, the population of link 4 may, on general groun
be different from that of links 3 and 5 allows for density
be constant through the interface. We now consider the e
of microcurrents that are precluded by symmetry in pla
interfaces.

V. SURFACE TENSION IN CURVED INTERFACES

Microcurrents are normally induced close to an interfa
by the segregating effect of the surface tension rule@8,9,15#;
only in the presence of suitable symmetry, such as the c
considered in Sec. IV, will the microcurrents be absent. T
presence of interfacial curvature and a gradient in the c
field mean makes it impossible to argue on general grou
that an interfacial microcurrent should be absent from
rest interface. Its influence will be felt principally throug
the first term in Eq.~20!. The magnitude of the microcurren
velocity close to the interface has been observed@8,15# to be
of the form

u5u~x!s. ~29!

For circular interfaces in two-dimensional simulations
static ~say! red drops, the interfacial microcurrent patte
must conform with the rotational symmetry of the underlyi
lattice and two complementary, counterrotating microcurr
cells must occupy any lattice quadrant, the maximum vel
ity in each occurring close to the generating interface~Fig.
6!. In fact, the maximum value of the surface tension ind
ing perturbation occurs for the maximum value ofUi in Eq.
~12! at ū545°, accounting for the fact that the microcurre
circulation close to the interface is radial along the diago
bisectors of each quadrant~Fig. 6!. Moreover, on grounds o
lattice symmetry and hydrodynamics~which must ultimately
govern the microcurrent!, one expects the extent of a m
crocurrent cell to be determined by lattice extremities a
drop radiusR. We approximate the flow in a microcurren
cell outside the interface with a uniform rotation such that
outermost streamline touches the interface and has a vel
determined principally bys. We then write the microcurren
velocity field u(x)5u(rÎ ,urI u/R) in Eq. ~25! and note that
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u(rÎ ,urI u/R) must have the fourfold rotational symmetry of th
lattice. Hence Eq.~20! becomes

S5
s2cos~ ū !

M0
(

x
u~rÎ ,urI u/R!2r cos$2@uu~x!2 ū #%

1
s cos~ ū !

M0v
@622 cos~4ū !#(

x
C~x!. ~30!

This result, it should be noted, applies only to the D2Q
BGK model through the assumed form of the equilibriu
distribution function defined in Eqs.~14! and~15! and intro-
duced by Qian, d’Humieres, and Lallemand@5#. Clearly, the
potential for anisotropy entailed in the second term theref
applies only to the model under consideration here and
actual extent of any anisotropy in surface tension may
determined only afterC(x) is known. To interpret Eq.~30!
in the presence of curvature, we consider an interfacial
ment of lengthRDu from a large circular drop of radiusR,
subtending a small angleDu at the drop center. This elemen
we assume to be locally flat and contained within an a
defined byM0 long horizontal lattice linesz5const. Then
M05RDu cos(ū), whence cos(ū)/M051/RDu. The magni-
tude of the positional summation in the second term of E
~30! will be proportional toRDu and a formsk2 /v is as-
sumed. With respect to the first term, we take the microc
rent activity to decay rapidly away from the interface~an
assumption supported by the results of Fig. 7! and this will
yield finite contributions to the first summation only from
number of sites proportional in number to theRDu and the
velocity at all of these sites we take to be determined p
cipally by s. The positional summation in the first term i
Eq. ~30! will therefore also be proportional toRDu and we
assume a forms2k1 . For the interfacial tension of a drop w
therefore find

S~s,v!5s2k11
s

v
k2 , ~31!

in which for small values of the perturbation parameters,
the dominant contribution is from the second term and he

S~s,v!>
s

v
k2 . ~32!

VI. SIMULATION

In order to make a comparison with the calculations
plane interfaces we construct an effectively infinite syst
and thus periodic boundaries were used all around a sq
lattice and retained for all other simulations reported here
suitable box size and equilibration time were determined
the basis of stability. For all the data presented, sites w
initialized to achromatic densityr051.8 with rest equilib-
rium link densities of 0.8, 0.18, and 0.045 for speed 0, 1, a
2 links, respectively, the initial color being allocated so as
produce a particular interface configuration.

Results were obtained for plane,y5const, interfaces on a
1203120 lattice containing a red vertical layer sandwich
between two blue fluids. The initial interface lay betwe
consecutivey planes of nodes and the red layer was defin
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520 57I. HALLIDAY, S. P. THOMPSON, AND C. M. CARE
by rR(x,y)51.8 and 0, 39,y,81. The diagonal interface
was constructed by initializing as red those nodes which
on the lattice of Fig. 4~b! with y coordinates such tha
z226<y<z126, with the periodic images of this red laye
incorporated in the lattice corners@Fig. 4~b!#. An equilibra-
tion time of 15 000 updates was allowed for both plane
terface orientations and the steady-state density distribu
was measured through the interfacial region. Also measu
through the interface was quantityPN2PT , using Eqs.~8!
and ~9!. These measurements, in conjunction with a sim
discrete approximation to the mechanical definition~7!, al-
lowed the planar interfacial tension to be evaluated.

Links within a circular, central portion of radiusR of an
otherwise blue 1503150 lattice were initialized red to form
circular drop. Different combinations of surface tension p
turbation parameters and BGK collision parameterv were
used to generate stable drops with the values ofv now being
chosen so as best to recover classical hydrodynamic beh
@16#. Laplace law measurements were used upon these d
to obtain surface tensionS~s,v! from the gradient of pres
sure differenceDp5Dr/3 @4,5# as a function of 1/R for 15
,R,40. The steady-state value ofR was obtained from the
drop inertia tensor@8#.

In order to observe the influence of microcurrent activ
from circular interfaces the stream function

c~x,y!5E
y50

y85y
uy~x,y8!dy8 ~33!

was calculated from the velocity field along with the corr
sponding pressure~lattice density! field. The variation with
normalized distance from the drop centerr̄[r /R, of velocity
modulus averaged over an annular lattice sample conce
with the drop center, radiusr̄ , yields a quantitative measur
of microcurrent activity and a test of the assumptions m
in deriving Eq.~31!.

VII. RESULTS

Consistent with the assumptions made in Sec. II, qu
cent color mixing in appropriately initialized plane interfac
was confined to layers of two sites. Table II shows the cl
agreement between calculated and measured interf
quantities for both cases of planar interface considered.
measured values of surface tension were obtained dire
from a trapezium rule approximation to Eq.~7!:

TABLE II. Calculated and measured values of the Laplace
surface tension. Calculated values are derived from Eqs.~23! and
~28!. For the planar horizontal interface (s,v)5(531023,0.91),
while for the planar diagonal interfaces simulated~s,v!5
~531024,0.91).

Interface
orientation

Calculated
S~s,v!

Measured
S~s,v!

Calculated
C

Measured
C

horizontal 7.3331023 7.3731023 0.166 0.15
diagonal 1.7331023 1.7331023 0.28 0.28
y
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S~s,v!5
uci u
2 S (

l
@PN~ l!2PT~ l!1PN~ l1ci !

2PT~ l1ci !# D , ~34!

wherel denotes position on a lattice line perpendicular to
interface and we use Eqs.~8! and~9! to obtainPN( l),PT( l).

Figure 5~a! shows, on the same axes, normalized variat
of color and pressure tensor contraction@PN( l)2PT( l)#
through the vertical interface described in Sec. III. For t
corresponding case of a diagonal interface@Figs. 5~b! and
5~c!# color is not, as expected, symmetrically distribut
about the maximum value ofPN( l)2PT( l); Figs. 5~b! and
5~c! represent sections of the interface along adjacent dia
nals ~Fig. 4! that are interrelated by a rotation ofp radians
and a color reversal. For the results of Fig. 5 the BGK c
lision parameterv50.91 was used in conjunction with su
face tension perturbationss50.005 @Fig. 5~a!# and
s50.0005@Figs. 5~b! and 5~c!#.

Figure 6 shows the microcurrent structure generated at
surface of a red drop through the stream functionc(x,y)
calculated by a process of numerical integration after
~33!. The microcurrents are seen to be consistent with
symmetry of the underlying lattice and the maximum pert
bation. The range of influence of the microcurrent for a p
riodically bounded drop on a 1503150 lattice is shown in
Fig. 7, which charts the variation ofuuu, flow speed, agains
normalized distance form the drop centerurI u/R for several
values of parameters. As a quantitative assessment we no
that Eq.~31! predicts that a graph ofS(s,v)/s against 1/v
will have an ordinal intercept~gradient! from which constant
k1 (k2) may be inferred. Accordingly~Fig. 8!, S(s,v)/s
was obtained from Laplace’s law~see Sec. VI! applied to
drops with 0.5<v<2.0 ands50.025. With the latter value
of perturbation parameter the number of data points ne
sary to apply linear regression reliably entails significant p
cessing, but yields values of 30.55 and 1.26 fork1 and k2 .
Hence, fors50.025, the microcurrent contribution to th
macroscopic surface tension in our model is seen to appr
mate to that arising from the second term in Eq.~31! and we
infer an estimated upper limits<0.025 such that, for the
particular model of the present study, the influence of a
crocurrent upon the macroscopic surface tension is of
creasing importance.

Figure 9 concentrates upon values of 0.001<s<0.0125,
well below this upper limit, and shows results for surfa
tensionS~s,v! for 1.5<v<1.9 plotted against the quotien
s/v; these results for the surface tension are derived fr
Laplace law measurements described above. The contin
line represents a linear regression fit to this data and altho
unconstrainedto pass through the origin, the fit generates
intercept that lies well within one standard deviation of ze
and a gradient that identifiesk2 @Eq. ~32!#. Obtained from
Eq. ~20!, Eq. ~23! is valid for a flat horizontal interface a
rest. Based as it is on the mechanical definition of surf
tension @12# @Eq. ~20!#, we interpret only with respect to
equilibrium~rest! fluids and the velocity dependence entail
in its first term, we suggest, should be regarded as aris
only from that flow present in a rest simulation: the m
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FIG. 5. ~a! Normalized variations across a vertical interfac
with S measured in lattice units. The dotted~dashed! line connects
calculated blue~red! densities and symbols mark correspondi
measured values. The solid line corresponds to the value ofPN

2PT . The achromatic density in use wasr051.8, v50.91, and
s50.005. ~b! Normalized variations across a diagonal interfa
sampled alongaa8 ~Fig. 4!. The parameters is related to the coor-
dinatey throughs5&y. After ~a! lines connect calculated point
and symbols show results obtained from simulation. The solid
corresponds to the value ofPN2PT . The achromatic density in us
was r051.8, v50.91, ands50.005. As expected, this plot doe
not show the same color-reversal symmetry as in the case of~a!;
instead the color distribution is related to that displayed in~c!; See
Sec. IV B. ~c! Normalized variations across a diagonal interfa
sampled alongbb8 ~Fig. 4!. Other parameters are the same as in~b!.
crocurrent. Nevertheless, a useful check on Eq.~20! may be
performed by applying a uniform shear of increasing r
parallel to the flat vertical layer210<y<10 on a 60360
lattice ~see the discussion above and Fig. 3!, the shears being
generated in the usual manner@8,9#. Setting ū50 and
uu(x)5p/2 for smalls, we may omit the second term from
Eq. ~20! and

S~s,v!;2
r

M0
(

x
u252r (

y5210

y520

u~y!2. ~35!

Figure 10 shows the results of plottingS~s,v!, obtained
from Eq. ~34!, as the ordinate against summationS0

[(y5210
y520 u(y)2, obtained for a small range of shear rates,

the abscissa, with the expected linear trend emerging.

,

,

e

,

FIG. 6. Stream function for steady circulation pattern develop
by a drop of radius 40 lattice units placed centrally on a squ
lattice. The flow pattern is observed to be stable after approxima
4000 time steps. The results were obtained for the same simula
parameters as Fig. 5~a!.
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smaller shear rates the~constant, positive! contribution of the
first term in Eq.~20! begins to become apparent. It is impo
tant to note that, for the reasons set out above, we do
claim that Fig. 10 represents more than an interesting p
erty of Eq.~20!, Eqs.~20! and ~30! resting on definitions in
which a static interface is implicit@12#.

VIII. CONCLUSIONS

We have presented a method by which the interface g
erating algorithm of Gunstensenet al., itself an extension of
the automaton-based algorithm of Rothman and Keller@7#,
may be successfully extended to a D2Q9 lattice BG
scheme and generalized to promote both tractability and
respondence with the progenitor cellular automaton te
nique. As Table II shows, simulation measurements of s

FIG. 7. Variation ofuuu, microcurrent flow speed measured
units of lattice spacing per time step, against normalized dista
from the drop centerurI u/R for several values of parameters ~see
key!. Note the approximately linear trend in peak flow activity wi
s, which occurs close to the interface.

FIG. 8. Simulational measurements of the Laplace law surf
tensionS~s,v! ~measured in lattice units! for 0.001<s<0.0125,
1.5<v<1.9 as a function of quotients/v ~where s and v are
dimensionless!. The continuous line is a linear regression fit to t
data.
ot
p-

n-

r-
-

r-

face tension and cross-interfacial color distributions for t
model are in good agreement with those values calcula
from analysis of our algorithm, for both plane horizontal a
diagonal microcurrent-free interfacial orientations. The d
ference between the two expressions suggests
orientational-dependent anisotropy in the model’s surf
tension and the effect of this upon shape in drops simula
by this method is currently under study. We have deduc
on general grounds, the structure of the microcurrent cir
lation generated by circular drops and compared these
measurements. These measurements demonstrate tha
simple theory successfully accounts for the broad structur
the microcurrent flow field. The analysis allows us to d
velop an expression@Eq. ~31!# for the surface tension of a
drop and this expression demonstrates that the microcur
velocity field might be expected directly to influence th
model’s surface tension. For small values of parameters the
corrections are only found to be second order ins and this is

ce

FIG. 9. Plot of S(s,v)/s ~measured in lattice units! against
~dimensionless! 1/v for 0.5<v<2.0. The former were obtained
from Laplace’s law applied to drops withs50.025 and 15<R
<40 on a 1503150 lattice.

e FIG. 10. S~s,v! @measured in lattice units obtained from E
~34!# as ordinate against summationS0[(y5210

y520 u(y)2 ~dimensions
of lattice units squared! for a vertical interface exposed to a uniform
shears parallel to the vertical interface210<y<10 placed on a
90360 lattice.
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substantiated by the measurements summarized in Fig
Any attempt quantitatively to assess the approximate the
of microcurrent contribution presented here will require su
stantial quantities of data and should be undertaken only
ter a more rigorous analysis of the contribution of the fi
term in Eq.~31!. The undertaking would be facilitated by
calculation of the steady microcurrent flow field as an a
Y

tt

tt

.

9.
ry
-
f-
t

-

proximate or numerical solution of the equations of creep
flow, which should fully account for the microcurrent stru
ture. Although our general arguments yield a qualitative
sight into the origin of the microcurrent, such a calculati
would provide the most useful check on our understanding
this phenomenon and hence upon the ability of the metho
the area of its most important potential application.
s.
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